True-3D = physical duplication of light distribution in a volume of interest

“True-3D”, in which none of the restrictions on the viewer exists due to physical duplication of light distribution, is more desirable and superior compared to stereoscopy; however such display systems are much more complicated.

Holography is a sophisticated true-3D method.
Holography

Greek: holos – whole (entire)

grapho – write (record)

The two step method for lensless recording of 3D information about an object in the form of a complex amplitude

\[A(x,y) = A_o(x,y) \exp(\Phi(x,y)) \]

Optical holography requires:
- coherent (laser) light, high resolution recording material

Digital holography requires:
- Coherent light, high resolution and big aperture CCD/CMOS

Fundamental challenge in holographic video

Goal:
- achieving a high enough space-bandwidth product of capture and display system to meet the image size and view angle requirements for the viewer.

- a large view angle is possible only with very small interference fringes (and thus small pixels),
- a large image translates to a large aperture of CCD and light modulator

Therefore what’s necessary is
- a massive number of very small pixels.
MIT holographic systems: Mark-I, II, III

Mark I: 1D light modulation by AOM + mechanical scanning

Mark II: 18 channel AOM+ bank of scanning mirrors
Controlled by custom based computer Cheops
150x75x150 mm³, 30 deg view angle

Mark III: based on surface acoustic wave (scanning replaced by HOE)
- 440 scan lines, 30 Hz
- 80 x 60 x 80 mm³, 24 deg view angle

See Real (2007)

Approach: reconstruct only that part of the object wavefront that hits the eye pupil of observer. Vertical paralax only.
Separate observer window for each eye generated by spatial or temporal multiplexing

QinetiQ: Active Tiling System

Features:
- For store and display CG holograms
- High frame rate of medium complexity
- Electr. address EASLMs –image generator
- Holograms written at high res. OASLM
- Parallel approach
- Monochromatic or frame –sequential-colour

1x4 channel AT unit

Spatial multiplex
3x8 billion-pixel
Full-paralax
Full-colour
3D image

Dynamic holographic stereogram

LCOSes display holograms calculated from 2D images

Achieved viewing angle 22.8 deg (2008, Korea)

The existing holographic systems are based on CG holograms but **holograms of real objects**

Digital holography for 3D and 4D real-world objects’ capture, processing, and display

OU LU, Bilkent, WUT, EPFEL, BIAS, CNR, Holoeye, LynceeTech, NUIM,

Real 3D Holographic video

Registration
- Numerical CGH
- Optical Digital Holograms

Reconstruction
- Numerical Optical

Data processing
- Cal. Complex amplitude
- Reduction of information
- Quality improvement
- Manipulation of 3D object

A/D: CCD/CMOS

Digital holograms

3D static & dynamic scenes

Aim of EU project
- Real 3D
Data displayed: Computer generated holograms

- Model of Object/scene 3D/4D
- Complex amplitude distribution of the object wavefront
- Determination $\Gamma(x,y,z)$
 - Fourier Hol., Fresnel Hol., Stereogram,
- Cloud of points
- Triangle mesh
- 2D images
- Photometric representation

Multi GPU systems (HORN6)
- Coding, Processing Registration Konwersja C/A
- 3D scene visualization
- SLM
- Eye tracking module

Real3D holographic video system

- Application of inline Fresnel holograms
- Capture of different perspectives of an object by multiple high resolution CCD/CMOS cameras in circular configuration
- Display of holograms by multiple phase-only SLMs in circular configuration
- Matching the parameters of capture and display systems
- Coding and compression of DHs for high quality data transfer
- Data processing of DHs into object phase data for display at SLMs
Capture system

- Multi CCD system (6)
- Circular configuration
- Normal of CCDs directed to object

Otherwise:
- Optical field might not fill detector
- Optical field might not be recorded due to high frequencies

Inline hologram registr.: PSDH (static)
Fresnel (dynamic)

- Best use of spatial bandwidth
- But need to remove DC and TI
- Good 3D perception

Capture system 6 CCDs

Source: Impulse laser 6ns

Problem low fill factor

Basler piA2400 -12gm (2456x2058, 3.45μm)
Capture system 6 CCDs

3D StereoMedia, December 2010

Removal of DC and twin image terms from inline holograms

Reconstruction of inline hologram

Phase shifting holography
Requires capture of at least 3 DH

Reconstruction of a single DH
Display system – Illumination along normal

Advantage: the captured optical field is directly reconstructed on SLMs

Disadvantage: complicated opto-mechanical realization

Multi LCOS SLMs

Liquid Crystal on Silicon SLM

Holoeyle 1080P

Pixel size 8µm

Reconstruction system – single illumination direction

Advantages:
Flexible system
Easy to adjust and calibrate

Problem:
the phase function at SLMs should include the tilt

LCoS display – HEO 1080P
Phase only
(res. 1080x1920, pp. 8µm)
Wide angle tilt processing algorithm

Tilt 0° Tilt 10° Tilt 20° Tilt 30° Tilt 40°

Without tilt procedure

With tilt procedure

Coupling the capture and display systems

Mismatch in geometrical and optical features of both systems

N1=N2

Wavelength Size of pixels

Reconstruction distance

$z_{rec} = z_{reg} \frac{\lambda_{reg}}{\lambda_{rec}} \Delta^2_{rec}$

Transverse

$M_t = \frac{\Delta_{rec}}{\Delta_{reg}}$

Longitudinal

$M_l = \frac{\lambda_{reg}}{\lambda_{rec}} M_t^2$

Angular magnification

$M_a = \frac{\lambda_{rec}}{\lambda_{reg}} M_t$

- z_{reg}: distance between object and detector,
- $\lambda_{reg/rec}$: wavelength used during registration and reconstruction
- $\Delta_{reg/rec}$: pixel size of CCD and SLM respectively
Holographic display: Main modules

Multi SLMs Module

Control & Data Processing

Illumination

Nd:Yag: \(\lambda = 532\text{nm} \)

Observation

Naked eye observation
Directional diffuser
Through eyepiece

Display

Real images

SLMs & electronics

Colimator

Laser & electronics

Mirrors

SLMs

Configuration for FF=0.6

➢ hologram reconstruction
distance: 400 – 700 mm,
➢ observation of real
(but imaginary) image
Reconstruction of static object

3 different perspectives as seen by camera from combined image

6 views of different object perspectives as reconstructed by single SLMs

Simulations for newest JVC SLM

JVC SLM (simulation parameters)
Resolution: 8000 x 4000 pixels, pixel size 4.8 µm
Distance between eyes \(db = 65 \) [mm],
FF (for both capture and display) = 1
6 SLMs
Reconstruction distance: 1000 [mm],

Output:
VFOV = 111 [mm]
No gaps
Allowed a certain
Observer’s movement
Whish list

- Increase aperture (capture/display devices) and decrease the size of pixels
- CCD/CMOS at flexible substrate (circular configuration)
- Solutions (optical + numerical) for gaps problem
- Increase the quality of visualization the wavefront in space
- Efficient solutions for video capture and data transfer

Real 3D project is funded by the European Community’s Seventh Framework Programme FP7/2007-2013 under grant agreement n° 216105